Seal Spring Types

Four Types of Seal Springs

Whitepapers On Whiteboard

 

EXPERT LEVEL:

Beginner

LENGTH:

4:41

INSTRUCTOR:

Jason Huff

VIDEO TRANSCRIPT

Why Are Springs Used With Seals?

The main reason to use a spring would be to overcome the limitations of the primary seal element.

Generally, seals made from elastomer and most polymers can energize themselves at least for a short time under certain conditions. However, as application parameters broaden, spring energizers are needed to provide consistent loading.

There are four types of springs commonly used in the industry:
1. Garter Springs
2. Cantilever or V Springs
3. Helical-Wound Springs
4. Canted-Coil Springs

1. Garter Springs

Garter Springs

The garter spring is constructed of a thin wire that is coiled and back-wound on itself, which resists stretching or being pulled apart. They are most commonly used on a radial shaft seal and helps the lip engage the shaft. There are many different combinations of wire and coil diameter, which allows us to select predictable loading across a wide range of seal diameters.

They are a good option when we have high runout in our shaft allowing the shaft seal to maintain contact with the shaft and unlike the rest of the seals we’ll talk about today. Garter springs do not require an opposing surface to push against.

2. Cantilever or V Springs

Cantilever V Springs

The next type of spring is the cantilever or more commonly known as the V spring. It is made up of a metal strip that is punched and formed into a “V” shape. This spring geometry allows for a wide deflection range in a predictable linear load.

The shape of the spring also concentrates the load at the front of the seal – making it a good choice for excluders or scrapers in reciprocating applications. It can also be a good choice for static applications where we have wide tolerances or misaligned glands.

V Spring Deflection Chart

3. Helical-Wound Springs

Helical-Wound Springs
A helical wound spring is constructed of a thin metal strip that is formed into a helix shape. This geometry produces a high load versus deflection curve – making it a good choice for vacuum or cryogenic applications.

These are commonly selected for static applications. But sometimes we can use them in slow or infrequent Dynamic conditions.

The small deflection range of this type of spring prevents us from using them when we have wide intolerances or misalignment.

Helical Spring Deflection Chart

4. Canted-Coil Springs

Canted-Coil Springs
Finally, a canted-coil spring is made from a round wire that is coiled and then formed into a slanted shape.

These types of springs have a very flat load versus deflection curve – making them a great option when we do run into a large gland tolerance or a misaligned condition.

They are also good options when we run into a friction-sensitive application because as the engagement of the lip changes the amount of loading generated by the spring does not change.

Canted-Coil Spring Deflection Chart

I hope that gives you a brief introduction to the different types of springs that are available and some of the advantages for each type.

Unique Benefits of Parker JM Clipper Seals

“Not All Seals Are Considered Equal”

Parker JM Clipper® Seal

Whitepapers On Whiteboard

 

EXPERT LEVEL:

Beginner

LENGTH:

3:17

INSTRUCTOR:

Don Grawe

VIDEO TRANSCRIPT

Welcome to our next installment of ESP’s “Not All Seals Are Created Equal.” Today we are going to talk about a seal that’s been around for a long time, but in some cases may be one of the best-kept secrets in the utilization of rotary shaft seal applications. And that is the Parker JM Clipper® seal.

Standard Oil Seals

What makes the JM Clipper® seal a little unique is that when we think of radial shaft seals, oil seals, we think of a metal can on the OD with a rubber element that has been molded to it that acts as the sealing element. Sometimes it has a spring to help provide the necessary pressure on the sealing lip – the necessary load – to allow it to function properly.

Parker JM Clipper® Seal

Parker JM Clipper Diagram

With the Clipper® seal you have a composite OD that is integral with and molded with, the elastomeric sealant component – can also have a spring to it for added load. Many of the same characteristics as what the traditional metal seal would be. So very robust seal and it provides a lot of rather unique benefits and features from the normal oil seal.
Let’s take a look at a few of them.

Unique Benefits & Features of JM Clipper® Seals

Unique Benefits of Parker JM Clipper Seals

1. As mentioned, the composite OD already provides a gasket type seal. So, it exactly does perform as a sealing element as opposed to just metal-on-metal and it does not require any type of plates or secondary components to keep it in place.

2. It’s composite so it’s not going to rust or corrode – creating contamination issues.

3. It is a one-piece molded construction for the entire size range, which makes it a little bit more robust than the normal mechanical crimping or in some cases adhesive gluing of the rubber to the outer can.

4. It eliminates a lot of the problems of thermal expansion when you have extreme heat, extreme cold, and metal-on-metal – sometimes losing some of that friction fit that is necessary for the oil seal to stay in place and perform.

5. It is much easier to install and is very user-friendly.

6. It is also able to be designed for split models as well.


The Parker JM Clipper® seal has been around for a long time. It’s utilized in a lot of different industries, a lot of different applications, and one that wanted you to be aware of.

If you have any questions or need more information regarding the JM Clipper seal, please contact ESP International, check out our website and learn more.

Why PTFE Rotary Seals vs normal rubber?

wow-web-banner

Why PTFE Rotary Seals vs Normal Rubber?

Whitepapers On Whiteboard

 

EXPERT LEVEL:

Beginner

LENGTH:

7:07

INSTRUCTOR:

Jason Huff

 


 


Click on the image to open in a New Tab.

 

VIDEO TRANSCRIPT

Today we’re going to talk about PTFE rotary seals.

PTFE is more commonly known in the industry as Teflon, but today we’re going to refer to it as PTFE because Teflon is the DuPont trade name. Reasons we would choose to use PTFE over your normal rubber elastomer style seal would be that we’ve exceeded the capabilities. Whether it be speed, pressure, temperature, and maybe the chemicals that it meets. PTFE is a very low friction material – so it’s able to operate at very high speeds.

It’s got a very broad temperature range. Virgin PTFE can handle ranges from -425 Fahrenheit up to 450 Fahrenheit and we can even shift that range a little higher depending on the fillers that we add to it. So, it can handle a wide range of temperatures and basically any fluid or chemical that you throw at it.

High Speed, Low Pressure Profile

For this one, we’ve got very lightly loaded and very flexible lips that are machined. They’re very lightly engaged, so we need a shaft that runs very true – no runout because PTFE is not a very resilient material. It needs some form of energizer in order to make sure that it remains in contact with the shaft.

So with this profile here, we’re going to be limited to about 50 psi, but we can run up to about 5,000 surface feet per minute for speeds. We have an excluder and then the main lip to retain the fluid.

Alterations

We can change that a little bit – we could do away with that lip and possibly add a redundant lip for fluid retention.

If we had additional pressure, we could reinforce this a little bit with a metal band – increasing the rigidity of it. We could increase the pressure rating of up to 150 psi.

If we did have a little bit of runout that we needed to handle we could modify this lip a little bit and include what we call an “elf toe”. And then we could add a small spring to help the lip maintain contact with the shaft. But still, the runout must be minimal. We’re talking about maybe 20 thousandths depending on the speed.


High Pressure, Low Speed Profile

If we shift gears and go over to this other style, we’re looking at high pressure but relatively low speed.

The pressure rating on this profile would be about 3,000 PSI and your surface speed is going to be limited to about 1,000 surface feet per minute.


Alterations

We’ve got quite a few different options as far as lip styles:

We can do a traditional scraper lip, which is good at scraping fluid and keeping contaminants out.


We could change the lips style to a taper and that’s going to be better for sealing and lower friction.


Several different spring options:

– I’ve got the cantilever or V Springs shown in there right now.

– Another option would be a canted coil if we wanted to reduce the lip loading a little bit.


And we’ve got several different options for the bore:

We could eliminate this o-ring and do a flanged design. This flange would get clamped in the hardware and ensures that the seal cannot rotate in the bore and allows you to increase your speed rating just a little bit.


If we needed to go higher than the 3,000 PSI for pressure, we could extend this heal a little bit. It makes it a lot more rigid, a lot more stable profile. So, in something like this, there would be an o-ring in there as well. This could bump our pressure rating up to close to 10,000 PSI.


So, we’ve got a wide range of possibilities with PTFE and we can tailor the fillers depending on the application conditions and the performance criteria needed. There’s a wide range of additives that we can put in the PTFE to tailor to the needs.

Applications

Wide range of applications that these seals can be used in:

  • A lot of times you’ll see them in gearboxes or motors
  • Pressure washers for when we’ve got high pressure
  • Rotary unions
  • Swivels
  • Compressors
  • The Virgin PTFE is FDA compliant. So it’s a good option for those types of applications.
  • Cryogenics due to the wide temperature range
  • Robotics

Another benefit of PTFE versus a rubber elastomer seal is that there’s no tooling required for these. These get machined out of a sleeve or billet of material. So prototyping and initial samples are very fast and inexpensive.

And that’s it for PTFE seals.

 


 

The Importance of the PV Value

wow-web-banner

The Importance of the PV Value When Selecting A Seal

Whitepapers On Whiteboard

 

EXPERT LEVEL:

Intermediate

LENGTH:

4:25

INSTRUCTOR:

Jason Huff

 

SUMMARY

Pressure velocity, or PV value, is the combination of the pressure of the application and the speed of either the rotating or reciprocating shaft. The PV limit is the maximum value of that combination where the seal will function and wear normally. If we exceed that value, we’re going to see excessive wear which will lead to sealing failure.


There are several factors to consider when selecting a seal. Each factor has a direct impact on the performance and lifespan of your application. One of the most significant, but often overlooked, is the pressure-velocity, or PV, of your seal.

Jason Huff spends some time defining pressure-velocity, the calculations, and walking through examples to show its significance.


Click on the image to open in a New Tab.

 

VIDEO TRANSCRIPT

When selecting a seal, there are several factors that we need to consider. Including pressure, speed, temperature, the media you’re trying to seal, the hardness, and surface finish of the mating hardware.

And arguably one of the most important things that we need to take into consideration is the PV value or pressure velocity.

This is the combination of the pressure of the application and the speed of either the rotating or reciprocating shaft. The PV limit is the maximum value of that combination where the seal will function and wear normally. If we exceed that value, we’re going to see excessive wear which will lead to sealing failure.

 

Reciprocating PV Calculation

For a reciprocating application, to calculate the PV value:
– take the stroke length in feet
– multiply that by the cycle rate in cycles per minute
– multiply that by the pressure in PSI

 

Reciprocating Example

recip-calcseal-selection-chart

If we had an application that had a stroke length of 3-inches and a cycle rate of 80 cycles per minute and a pressure of 600 PSI:
– 600 PSI should be no problem for a quad ring
– A u-cup will handle 600 PSI – no problem
– And then obviously these two versions of a cap seal can handle 600 PSI

The issue becomes when we combine that with the speed of 80 cycles per minute, which is fast for a reciprocating application.

We’re going to take our:
– three-inch stroke length divide that by 12 to get it in feet
– multiply that by 2 to capture the entire distance traveled
– multiply the 80 cycles per minute
– multiply 600 PSI

That puts our PV value at 24,000.

When we reference our seal selection chart you can see both the quad ring and u-cup are no longer viable options and we’re going to have to stick to one of these cap seal options.

 

Rotary PV Calculation

 

Similarly, if we want to calculate the PV value for a rotary application, we’re going to take:
– the circumference of our shaft in feet
– multiply that by the speed in RPM
– multiply that by the pressure in PSI

 

Rotary Example

seal-selection-chart

If we had a 2-inch diameter shaft, and it was rotating at 1500 RPM and a pressure of 30 PSI:
– 1500 RPM for a traditional rotary lip seal – no problem
– A Flexi-lip or PTFE lip seal – no problem
– The same with these spring energized PTFE seals

Now that we have to consider 30 PSI that automatically puts are rotary lip seal out because that’s exceeding its max range – 30 PSI for the PTFE lip seal is no problem. Not a problem for the spring energized PTFE seals either.

But, when we combine the two:

– our 2-inch shaft divided by 12 so that we’re in units of feet
– multiply that by pi to get the circumference
– multiply 1500 RPM
– multiply 30 PSI

That puts our PV value at 23,562.

Again, now it eliminates those first two options as being acceptable seals.

 

Summary

It’s very important to not only consider the pressure and velocity independently – we need to combine the two so that we get a true understanding of what the seal is going to see in application.

Shaft Lead A.K.A “Twist”

wow-web-banner

Shaft Lead A.K.A “Twist”

Whitepapers On Whiteboard

 

EXPERT LEVEL:

3 of 5

LENGTH:

8:45

INSTRUCTOR:

Andrew Rommann

 

SUMMARY

For optimum performance of seals, the shaft surface texture must be optimal. A rough surface texture will cause the seal to wear out quickly, while a smooth texture will cause the seal to bed incorrectly. The shaft lead, also called twist, is formed during the manufacture of shafts and has to be ideally zero.

Andrew Rommann explains the different types of shaft lead, what it does to a sealing system, and methods to measure.


Click on the image to open in a New Tab.

 

VIDEO TRANSCRIPT

Shaft lead also known as twist. Shaft lead, if not well understood and defined on your specifications, can have a detrimental impact to the performance of a dynamic sealing system.

Typical rotary applications have an elastomeric sealing element interfacing with a rotating shaft. On the shaft surface, the characteristics are very important and critical to the proper operation of the sealing system.  One of those characteristics is shaft lead.

 

Macro Shaft Lead

A typical manufacturing process may be the use of a single point tool against a rotating shaft where the tools actually traversing the surface of the shaft. This operation will result in a spiraling groove pattern around the circumference of the shaft. In this type of pattern, we refer to it as macro lead – has a continuous thread-like structure.

 

Micro Shaft Lead

An alternative process maybe traverse grinding.

In this case, we don’t have a single point tool rather a stone with multiple points that contact the rotating shaft. The stone is still traversing along the surface of the shaft and it does result in micro lead. The threadlike structures are not continuous, but they do have a deviation from the circumferential direction of the surface of the shaft resulting in shaft lead.

 

Two Orientations of Shaft Lead

Shaft lead can have two orientations. It can be a right-hand orientation. Where it’s shown here on the moving from the bottom right to the top left corner of the image and left-hand lead where you’re actually the threadlike pattern is from the bottom left to the top right.

 

Results In A Sealing System

So what does this do in a sealing system?

Again, in a rotary sealing system, we have an elastomeric sealing element that is interfacing with a rotating shaft.

If we look closer at the surface of the shaft and in this illustration, I actually have drawn a right-hand lead type structure. We can see where the oil is in contact with the shaft surface and the sealing lip.

As the shaft rotates depending on the direction of rotation, it will actually transport oil from left to right or right to left. Because this is right-hand twist if we have a right-hand rotation – so the top of the shaft moving towards the bore – we will actually end up with movement of the oil from left to right. So in this case out of the sealed system resulting in leakage.

If we have left-hand rotation, so in this case, the top of the shaft moving out away from the bore you will result in movement from right to left. So left-hand transport. This will help retain the oil in the system.

However, if it’s aggressive enough transportation of the oil it will actually result in a lack of proper lubrication at the interface between the sealing lip and the shaft surface could lead to premature wear of the sealing lip.

 

Twist, Rotation, Transport

 So again right-hand twist right-hand rotation – the transport is to the right. A right-hand twist with a left-hand rotation – the transportation is to the left.

 

String Method & Optical Method

So how can we measure and hopefully quantify shaft lead on an actual physical component? There are two major categories out there. There are a lot of different methods developed over the years, but the oldest and most well-known method is referred to as the string method or the thread method.

In this method, you mount a shaft in a rotating device. You drape a thread with a weight attached to it over the shaft. From the side view as you slowly rotate the shaft you may observe movement to the left or to the right from its original position.

If you do observe movement, you are observing that the shaft likely has lead. You cannot easily and precisely quantify accurately the amount of lead that exists in the shaft, but you can get a qualitative sense of whether or not you have left-hand or right-hand shaft lead.

A more precise and accurate method of measurement is using an optical method. In an optical method, you are creating a 3D mapping or 3D profiling of the entire surface of the shaft.

Software can then collect the data and process it to produce a representation of the effective shaft lead of the system.

The image on the left you can see as you move in the circumferential direction from 0 to 360 Degrees. You actually have axial movement along the shaft. In the one on the right-hand side you can see as you move from 0 to 360 Degrees, you actually have zero movement along the axial position of the shaft. This one we would refer to as having right hand lead this one having zero lead.

Using the optical methods, you can get a precise and accurate quantification of the lead angle, which can be useful when you are inspecting or qualifying components for a new product.

 

Industry Specifications

Some of the specifications that exist and are used in the industry that you may see include ISO 6194 – 1 and DIN 3760. Both of which specify zero lead. RMA OS-1-1 actually does tolerate lead to a very small level.

There are other specifications out there. There are also specifications that exist for most major OEMs where they have expanded on the information that’s available in the industry standard specifications.

 

Conclusion

 

The main thing to remember is that if you are not aware of what your tolerances for shaft lead in your sealing system, or you’re not aware of what your actual lead is, you could end up with performance issues that are not easy to identify the root cause.

And in many cases we find that in a situation where you’re not able to identify the root cause of a sealing system failure in a rotating system – if it’s not a tribute attributable to the elastomeric seal or to other obvious installation design issues – in some cases it’s actually result of the presence of lead that is hard to detect and again not very well understood.

Features of Radial Shaft Seals

wow-web-banner

Features of Radial Shaft Seals (One Lip, Two Lip, Red Lip, Blue Lip)

Whitepapers On Whiteboard

 

EXPERT LEVEL:

1 of 5

LENGTH:

1:57

INSTRUCTOR:

Andrew Rommann

 

SUMMARY

Rotary shaft seals, also known as lip seals, are used to seal rotary elements. Deciding on the type of radial shaft seal is a challenging process that requires selecting specific seal design characteristics to match the system parameters.


Today let’s dive into the basics; the components and materials that make these complex seals.

Features-of-Radial-Shaft-Seals_med

Click on the image to open in a New Tab.

 

VIDEO TRANSCRIPT

Features:

RSS-features

Going to talk today about features of radial shaft seals. A radial shaft seal is a component typically employed to seal in fluids and seal out contaminants in a dynamic application. Typical features include:

    • the main sealing lip
    • a metal stamping that serves as a substrate for the elastomer to be bonded to and also provides rigidity to the component when it’s installed in the application
    • a garter spring on the main sealing lip that supplements the elastomer and the radial sealing force
    • sometimes we employ what’s known as adust lip to keep out light contaminants that may try to ingress into the application.

 

Installation:

RSS-orientation

A radial shaft seal is typically installed in this orientation with the main sealing lip facing inward towards the oil or the fluid being sealed in.


It’s installed in the stationary bore as a press-fit and it has the main lip and the dust lip engaging the rotating shaft.

Materials:

RSS-material

Some of the major considerations to make for selection of material include the temperature, the speed, the fluid, and the pressure of the application you are being sealed in.


The most important thing to remember is you need to understand all of the parameters of your application when requesting or working with an engineer to provide a recommendation for the proper radial shaft seal for the application. There are a wide variety of materials, profiles, and other parameters that can be adjusted to customize a radial shaft seal for your application.

z